China Car Front Drive Shaft

Part number
• A1 Cardone 65-9514
• Hollander 430-03231
• OE # 5215711AC
• Dorman 938012
Length:24.25/615.95mm
Vehicle Fit
2004~06 Dodge Dakota Front V6 3.7L Automatic Transmisson
2001~04 Dodge Dakota Front Manual Transmisson
2006 CZPT Raider LS Double Cab Front V6 3.7L
2006 CZPT Raider Extended Cab Front V8 4.7L Durocross
2006 CZPT Raider Double Cab Front V6 3.7L Durocross

Part number
• A1 Cardone 65-9151
• Hollander 430-03327
• OE # 5215712AC
• Dorman 938014
Length:26.75/679.5mm
Vehicle Fit
2001~03 Dodge Dakota Front Automatic Transmission
2004 Dodge Dakota Front V8 4.7L Automatic Transmission
2005~06 Dodge Dakota Front V6 3.7L and Manual Transmission
2005~06 Dodge Dakota Front V8 4.7L
2007 Dodge Dakota Front NV233 Transfer Case
2001~03 Dodge Durango Front
2006 CZPT Raider Double Cab Durocross Front V8 4.7L
2006 CZPT Raider Double Cab Front for XLS Models with V8 4.7L
2006 CZPT Raider Extended Cab Durocross Front V6 3.7L
2007 CZPT Raider Extended Cab Durocross Front V8 4.7L
2007 CZPT Raider Double Cab Front V8 4.7L

Part number
• A1 Cardone 65-9293
• Hollander 430-5716
• OE #
• Dorman 936813
Length:30.05/763.4mm
Vehicle Fit
1999~01 CZPT Explorer Driveshaft Front V6 4.0L
2001~05 CZPT Explorer Sport Trac Driveshaft Front
1998~11 CZPT Ranger Driveshaft Front
1998~05 Mazda B3000 Truck Driveshaft Front
1998~10 Mazda B4000 Truck Driveshaft Front
1999~01 Mercury Mountaineer Driveshaft Front

Part number
• A1 Cardone 65-9294
• Hollander
• OE #
• Dorman 936327
Length:28.18/715.8mm
Vehicle Fit
1999~01 CZPT Explorer Driveshaft FRONT V8 5.0L
1999~01 Mercury Mountaineer Driveshaft FRONT V8 5.0L

Part number
• A1 Cardone 65-9450
• Hollander 430-5717
• OE #
• Dorman 936325
Length:28.93/734.8mm
Vehicle Fit
1998 CZPT Explorer CZPT Bauer Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1998 CZPT Explorer Limited Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1998 CZPT Explorer XLT Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1998 Mercury Mountaineer Base Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1997 CZPT Explorer CZPT Bauer Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1997 CZPT Explorer Limited Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1997 CZPT Explorer XLT Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated
1997 Mercury Mountaineer Base Sport Utility 4-Door 5.0L 302Cu. In. V8 GAS OHV Naturally Aspirated

Part number
• Hollander 430-55716
• OE # 37200CL70A
• Dorman 938302
Length:36.32/922.5mm
Vehicle Fit
2571 Infiniti EX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2571 Infiniti M35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2571 Infiniti M45 X Sedan 4-Door 4.5L 4494CC V8 GAS DOHC Naturally Aspirated
2009 Infiniti EX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2009 Infiniti EX35 Journey Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2009 Infiniti M35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2009 Infiniti M45 X Sedan 4-Door 4.5L 4494CC V8 GAS DOHC Naturally Aspirated
2008 Infiniti EX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2008 Infiniti EX35 Journey Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2008 Infiniti FX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2008 Infiniti FX45 Base Sport Utility 4-Door 4.5L 4494CC V8 GAS DOHC Naturally Aspirated
2008 Infiniti G35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2008 Infiniti G35 X Sport Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2008 Infiniti M35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2008 Infiniti M45 X Sedan 4-Door 4.5L 4494CC V8 GAS DOHC Naturally Aspirated
2007 Infiniti FX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2007 Infiniti FX45 Base Sport Utility 4-Door 4.5L 4494CC V8 GAS DOHC Naturally Aspirated
2007 Infiniti G35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2007 Infiniti M35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2006 Infiniti FX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2006 Infiniti FX45 Base Sport Utility 4-Door 4.5L 4494CC V8 GAS DOHC Naturally Aspirated
2006 Infiniti G35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2006 Infiniti M35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2005 Infiniti FX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2005 Infiniti FX45 Base Sport Utility 4-Door 4.5L 4500CC V8 GAS DOHC Naturally Aspirated
2005 Infiniti G35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2004 Infiniti FX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2004 Infiniti FX45 Base Sport Utility 4-Door 4.5L 4500CC V8 GAS DOHC Naturally Aspirated
2004 Infiniti G35 X Sedan 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2003 Infiniti FX35 Base Sport Utility 4-Door 3.5L 3498CC V6 GAS DOHC Naturally Aspirated
2003 Infiniti FX45 Base Sport Utility 4-Door 4.5L 4500CC V8 GAS DOHC Naturally Aspirated

Part number
• A1 Cardone 65-9324
• Hollander 430-03246
• OE # 52111594AA
• Dorman 938124
Length:27.97/710.4mm
Vehicle Fit
2002~07 Jeep Liberty(自由光)
2002~05 Jeep Liberty 3.7L All Manual Transmissons
2007 Jeep Liberty 3.7L All Manual Transmissons
2006 Jeep Liberty 3.7L
2003~07 Jeep Liberty 3.7L 4 Speed Automatic Transmisson
2007 Jeep Liberty 3.7L All Automatic Transmissons

Part number
• A1 Cardone 65-9326
• Hollander 430-03247
• OE # 52111597AA
• Dorman 938123
Length:30.1/764.4mm
Vehicle Fit
2002~03 Jeep Liberty Front Driveshaft V6 3.7L Manual Transmission
2003 Jeep Liberty Front Driveshaft V6 3.7L 42RLE Automatic Transmission
2004~07 Jeep Liberty Front Driveshaft V6 3.7L

Part number
•A1 Cardone 65-9313
•Hollander 430-03310
•OE # 5257197AC AD
•Dorman 938142
Length:32.85/834.5mm
Vehicle Fit

Part number
•A1 Cardone 65-9314
•Hollander 430-0571
•OE # 5257198AB AD
•Dorman 938143
Length:31.34/796.1mm
Vehicle Fit

Part number
• A1 Cardone 65-9540
• Hollander
• OE #
• Dorman 938003
Length:31.85/809mm
Vehicle Fit
2003~09 Dodge Pick-up Truck 2500 Series – Front Shaft – 4 Speed Auto Transmission
2003~09 Dodge Pick-up Truck 3500 Series – Front Shaft – 4 Speed Auto Transmission
2003~09 Dodge Ram Trucks 2500 Series – Front Shaft – 4 Speed Auto Transmission
2003~09 Dodge Ram Trucks 3500 Series – Front Shaft – 4 Speed Auto Transmission

Part number
• A1 Cardone 65-9303
• Hollander
• OE #
• Dorman 938804
Length:41.11/1044.3mm
Vehicle Fit
2002~06 CZPT F250 F350 Super Duty Pickup 2 Door and 4 Door

• Hollander
• OE #
• Dorman 936803
Length:31.85/809mm
Vehicle Fit
2004~08 CZPT F-150

• OE # 45710-S9A-E01,45710-SCA-A01,45710S9AE01,45710SCA
• Dorman 936001
Length:80.9 Inch/2055mm
Vehicle Fit
2002~06 Honda CR-V EX LX SE Sport Utility 4-Door 2.4L

• OE # 8516726,45710SXSA01,45710SWAA01,45710SXSA01
• Dorman 936002
Length:80.9 Inch/2055mm
Vehicle Fit
2007~11 Honda CR-V EX LX SE Sport Utility 4-Door 2.4L

• Hollander 431-58972
• OE # 45710-S10-003,45710-S10-A01,45710S10003,45710S10A01
• Dorman 936003
Length:82.48 Inch/2095 mm
Vehicle Fit
1997-2001 Honda CR-V 4 Wheel Drive Rear Driveshaft

Part number 262571520 262 0571 9987 26208628042 2625719294
Length:738 mm
Vehicle Fit
2571 BMW 328i xDrive Base Coupe 2-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2571 BMW 328i xDrive Base Sedan 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2571 BMW 328i xDrive Base Wagon 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2571 BMW 335i xDrive Base Coupe 2-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2571 BMW 335i xDrive Base Sedan 4-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2009 BMW 328i xDrive Base Coupe 2-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2009 BMW 328i xDrive Base Sedan 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2009 BMW 328i xDrive Base Wagon 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2009 BMW 335i xDrive Base Coupe 2-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2009 BMW 335i xDrive Base Sedan 4-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2008 BMW 328xi Base Coupe 2-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2008 BMW 328xi Base Sedan 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2008 BMW 328xi Base Wagon 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2008 BMW 335xi Base Coupe 2-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2008 BMW 335xi Base Sedan 4-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2007 BMW 328xi Base Coupe 2-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2007 BMW 328xi Base Sedan 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2007 BMW 328xi Base Wagon 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2007 BMW 335xi Base Sedan 4-Door 3.0L 2979CC l6 GAS DOHC Turbocharged
2006 BMW 325xi Base Sedan 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2006 BMW 325xi Base Wagon 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2006 BMW 330xi Base Sedan 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated

Part number 2625716677
Length:718 mm
Vehicle Fit
2571 BMW X3 2.5si Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2571 BMW X3 3.0si Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2571 BMW X3 xDrive28i Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2571 BMW X3 xDrive30i Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2009 BMW X3 2.5si Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2009 BMW X3 3.0si Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2009 BMW X3 xDrive30i Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2008 BMW X3 2.5si Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2008 BMW X3 3.0i Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2008 BMW X3 3.0si Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2007 BMW X3 2.5si Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2007 BMW X3 3.0si Sport Utility 4-Door 3.0L 2996CC l6 GAS DOHC Naturally Aspirated
2005 BMW X3 2.5i Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2005 BMW X3 3.0i Sport Utility 4-Door 3.0L 2979CC l6 GAS DOHC Naturally Aspirated
2004 BMW X3 2.5i Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2004 BMW X3 3.0i Sport Utility 4-Door 3.0L 2979CC l6 GAS DOHC Naturally Aspirated

Part number 26203401609
Dorman 936304
Length:702 mm
Vehicle Fit
2006 BMW X3 2.5i Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2006 BMW X3 3.0i Sport Utility 4-Door 3.0L 2979CC l6 GAS DOHC Naturally Aspirated
2005 BMW X3 2.5i Sport Utility 4-Door 2.5L 2494CC 152Cu. In. l6 GAS DOHC Naturally Aspirated
2005 BMW X3 3.0i Sport Utility 4-Door 3.0L 2979CC l6 GAS DOHC Naturally Aspirated

An Overview of Worm Shafts and Gears

This article provides an overview of worm shafts and gears, including the type of toothing and deflection they experience. Other topics covered include the use of aluminum versus bronze worm shafts, calculating worm shaft deflection and lubrication. A thorough understanding of these issues will help you to design better gearboxes and other worm gear mechanisms. For further information, please visit the related websites. We also hope that you will find this article informative.
worm shaft

Double throat worm gears

The pitch diameter of a worm and the pitch of its worm wheel must be equal. The 2 types of worm gears have the same pitch diameter, but the difference lies in their axial and circular pitches. The pitch diameter is the distance between the worm’s teeth along its axis and the pitch diameter of the larger gear. Worms are made with left-handed or right-handed threads. The lead of the worm is the distance a point on the thread travels during 1 revolution of the worm gear. The backlash measurement should be made in a few different places on the gear wheel, as a large amount of backlash implies tooth spacing.
A double-throat worm gear is designed for high-load applications. It provides the tightest connection between worm and gear. It is crucial to mount a worm gear assembly correctly. The keyway design requires several points of contact, which block shaft rotation and help transfer torque to the gear. After determining the location of the keyway, a hole is drilled into the hub, which is then screwed into the gear.
The dual-threaded design of worm gears allows them to withstand heavy loads without slipping or tearing out of the worm. A double-throat worm gear provides the tightest connection between worm and gear, and is therefore ideal for hoisting applications. The self-locking nature of the worm gear is another advantage. If the worm gears are designed well, they are excellent for reducing speeds, as they are self-locking.
When choosing a worm, the number of threads that a worm has is critical. Thread starts determine the reduction ratio of a pair, so the higher the threads, the greater the ratio. The same is true for the worm helix angles, which can be 1, 2, or 3 threads long. This varies between a single thread and a double-throat worm gear, and it is crucial to consider the helix angle when selecting a worm.
Double-throat worm gears differ in their profile from the actual gear. Double-throat worm gears are especially useful in applications where noise is an issue. In addition to their low noise, worm gears can absorb shock loads. A double-throat worm gear is also a popular choice for many different types of applications. These gears are also commonly used for hoisting equipment. Its tooth profile is different from that of the actual gear.
worm shaft

Bronze or aluminum worm shafts

When selecting a worm, a few things should be kept in mind. The material of the shaft should be either bronze or aluminum. The worm itself is the primary component, but there are also addendum gears that are available. The total number of teeth on both the worm and the addendum gear should be greater than 40. The axial pitch of the worm needs to match the circular pitch of the larger gear.
The most common material used for worm gears is bronze because of its desirable mechanical properties. Bronze is a broad term referring to various copper alloys, including copper-nickel and copper-aluminum. Bronze is most commonly created by alloying copper with tin and aluminum. In some cases, this combination creates brass, which is a similar metal to bronze. The latter is less expensive and suitable for light loads.
There are many benefits to bronze worm gears. They are strong and durable, and they offer excellent wear-resistance. In contrast to steel worms, bronze worm gears are quieter than their counterparts. They also require no lubrication and are corrosion-resistant. Bronze worms are popular with small, light-weight machines, as they are easy to maintain. You can read more about worm gears in CZPT’s CZPT.
Although bronze or aluminum worm shafts are the most common, both materials are equally suitable for a variety of applications. A bronze shaft is often called bronze but may actually be brass. Historically, worm gears were made of SAE 65 gear bronze. However, newer materials have been introduced. SAE 65 gear bronze (UNS C90700) remains the preferred material. For high-volume applications, the material savings can be considerable.
Both types of worms are essentially the same in size and shape, but the lead on the left and right tooth surfaces can vary. This allows for precise adjustment of the backlash on a worm without changing the center distance between the worm gear. The different sizes of worms also make them easier to manufacture and maintain. But if you want an especially small worm for an industrial application, you should consider bronze or aluminum.

Calculation of worm shaft deflection

The centre-line distance of a worm gear and the number of worm teeth play a crucial role in the deflection of the rotor. These parameters should be entered into the tool in the same units as the main calculation. The selected variant is then transferred to the main calculation. The deflection of the worm gear can be calculated from the angle at which the worm teeth shrink. The following calculation is helpful for designing a worm gear.
Worm gears are widely used in industrial applications due to their high transmittable torques and large gear ratios. Their hard/soft material combination makes them ideally suited for a wide range of applications. The worm shaft is typically made of case-hardened steel, and the worm wheel is fabricated from a copper-tin-bronze alloy. In most cases, the wheel is the area of contact with the gear. Worm gears also have a low deflection, as high shaft deflection can affect the transmission accuracy and increase wear.
Another method for determining worm shaft deflection is to use the tooth-dependent bending stiffness of a worm gear’s toothing. By calculating the stiffness of the individual sections of a worm shaft, the stiffness of the entire worm can be determined. The approximate tooth area is shown in figure 5.
Another way to calculate worm shaft deflection is by using the FEM method. The simulation tool uses an analytical model of the worm gear shaft to determine the deflection of the worm. It is based on a 2-dimensional model, which is more suitable for simulation. Then, you need to input the worm gear’s pitch angle and the toothing to calculate the maximum deflection.
worm shaft

Lubrication of worm shafts

In order to protect the gears, worm drives require lubricants that offer excellent anti-wear protection, high oxidation resistance, and low friction. While mineral oil lubricants are widely used, synthetic base oils have better performance characteristics and lower operating temperatures. The Arrhenius Rate Rule states that chemical reactions double every 10 degrees C. Synthetic lubricants are the best choice for these applications.
Synthetics and compounded mineral oils are the most popular lubricants for worm gears. These oils are formulated with mineral basestock and 4 to 6 percent synthetic fatty acid. Surface-active additives give compounded gear oils outstanding lubricity and prevent sliding wear. These oils are suited for high-speed applications, including worm gears. However, synthetic oil has the disadvantage of being incompatible with polycarbonate and some paints.
Synthetic lubricants are expensive, but they can increase worm gear efficiency and operating life. Synthetic lubricants typically fall into 2 categories: PAO synthetic oils and EP synthetic oils. The latter has a higher viscosity index and can be used at a range of temperatures. Synthetic lubricants often contain anti-wear additives and EP (anti-wear).
Worm gears are frequently mounted over or under the gearbox. The proper lubrication is essential to ensure the correct mounting and operation. Oftentimes, inadequate lubrication can cause the unit to fail sooner than expected. Because of this, a technician may not make a connection between the lack of lube and the failure of the unit. It is important to follow the manufacturer’s recommendations and use high-quality lubricant for your gearbox.
Worm drives reduce backlash by minimizing the play between gear teeth. Backlash can cause damage if unbalanced forces are introduced. Worm drives are lightweight and durable because they have minimal moving parts. In addition, worm drives are low-noise and vibration. In addition, their sliding motion scrapes away excess lubricant. The constant sliding action generates a high amount of heat, which is why superior lubrication is critical.
Oils with a high film strength and excellent adhesion are ideal for lubrication of worm gears. Some of these oils contain sulfur, which can etch a bronze gear. In order to avoid this, it is imperative to use a lubricant that has high film strength and prevents asperities from welding. The ideal lubricant for worm gears is 1 that provides excellent film strength and does not contain sulfur.

pto parts

As one of leading pto parts manufacturers, suppliers and exporters of products, We offer pto parts and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of pto parts

Recent Posts